4,746 research outputs found

    The influence of grazing on land surface climatological variables

    Get PDF
    Research accomplishments in empirical measurements, laboratory analyses, data analyses, and modeling are summarized. Publications are listed. Presentations made during the funding period are also listed

    The influence of grazing on surface climatological variables of tallgrass prairie

    Get PDF
    Mass and energy exchange between most grassland canopies and the atmosphere are mediated by grazing activities. Ambient temperatures can be increased or decreased by grazers. Data have been assembled from simulated grazing experiments on Konza Prairie Research Natural Area and observations on adjacent pastures grazed by cattle show significant changes in primary production, nutrient content, and bidirectional reflectance characteristics as a function of grazing intensity. The purpose of this research was to provide algorithms that would allow incorporation of grazing effects into models of energy budgets using remote sensing procedures. The approach involved: (1) linking empirical measurements of plant biomass and grazing intensities to remotely sensed canopy reflectance, and (2) using a higher resolution, mechanistic grazing model to derive plant ecophysiological parameters that influence reflectance and other surface climatological variables

    Pmp27 Promotes Peroxisomal Proliferation

    Get PDF
    Peroxisomes perform many essential functions in eukaryotic cells. The weight of evidence indicates that these organelles divide by budding from preexisting peroxisomes. This process is not understood at the molecular level. Peroxisomal proliferation can be induced in Saccharomyces cerevisiae by oleate. This growth substrate is metabolized by peroxisomal enzymes. We have identified a protein, Pmp27, that promotes peroxisomal proliferation. This protein, previously termed Pmp24, was purified from peroxisomal membranes, and the corresponding gene, PMP27, was isolated and sequenced. Prop27 shares sequence similarity with the Pmp30 family in Candida boidinii. Pmp27 is a hydrophobic peroxisomal membrane protein but it can be extracted by high pH, suggesting that it does not fully span the bilayer. Its expression is regulated by oleate. The function of Pmp27 was probed by observing the phenotype of strains in which the protein was eliminated by gene disruption or overproduced by expression from a multicopy plasmid. The strain containing the disruption (3B) was able to grow on all carbon sources tested, including oleate, although growth on oleate, glycerol, and acetate was slower than wild type. Strain 3B contained peroxisomes with all of the enzymes of β-oxidation. However, in addition to the presence of a few modestly sized peroxisomes seen in a typical thin section of a cell growing on oleate-containing medium, cells of strain 3B also contained one or two very large peroxisomes. In contrast, cells in a strain in which Pmp27 was overexpressed contained an increased number of normal-sized peroxisomes. We suggest that Pmp27 promotes peroxisomal proliferation by participating in peroxisomal elongation or fission.

    Energy versus electron transfer in organic solar cells: a comparison of the photophysics of two indenofluorene: fullerene blend films

    Get PDF
    In this paper, we compare the photophysics and photovoltaic device performance of two indenofluorene based polymers: poly[2,8-(6,6,12,12-tetraoctylindenofluorene)-co-4,7-(2,1,3-benzothiodiazole] (IF8BT) and poly[2,8-(6,6,12,12-tetraoctylindenofluorene)-co-5,5-(40,70-di-2-thienyl-20,10,30-benzothiodiazole] (IF8TBTT) blended with [6,6]-phenyl C61 butyric acid methyl ester (PCBM). Photovoltaic devices made with IF8TBTT exhibit greatly superior photocurrent generation and photovoltaic efficiency compared to those made with IF8BT. The poor device efficiency of IF8BT/PCBM devices is shown to result from efficient, ultrafast singlet F€orster energy transfer from IF8BT to PCBM, with the resultant PCBM singlet exciton lacking sufficient energy to drive charge photogeneration. The higher photocurrent generation observed for IF8TBTT/PCBM devices is shown to result from IF8TBTT’s relatively weak, red-shifted photoluminescence characteristics, which switches off the polymer to fullerene singlet energy transfer pathway. As a consequence, IF8TBTT singlet excitons are able to drive charge separation at the polymer/fullerene interface, resulting in efficient photocurrent generation. These results are discussed in terms of the impact of donor/acceptor energy transfer upon photophysics and energetics of charge photogeneration in organic photovoltaic\ud devices. The relevance of these results to the design of polymers for organic photovoltaic applications is also discussed, particularly with regard to explaining why highly luminescent polymers developed for organic light emitting diode applications often give relatively poor performance in organic photovoltaic devices

    Ingestion of Diet Soda Before a Glucose Load Augments Glucagon-Like Peptide-1 Secretion

    Get PDF
    OBJECTIVE — The goal of this study was to determine the effect of artificial sweeteners on glucose, insulin, and glucagon-like peptide (GLP)-1 in humans. RESEARCH DESIGN AND METHODS — For this study, 22 healthy volunteers (mean age 18.5 � 4.2 years) underwent two 75-g oral glucose tolerance tests with frequent measurements of glucose, insulin, and GLP-1 for 180 min. Subjects drank 240 ml of diet soda or carbonated water, in randomized order, 10 min prior to the glucose load. RESULTS — Glucose excursions were similar after ingestion of carbonated water and diet soda. Serum insulin levels tended to be higher after diet soda, without statistical significance. GLP-1 peak and area under the curve (AUC) were significantly higher with diet soda (AUC 24.0 � 15.2 pmol/l per 180 min) versus carbonated water (AUC 16.2 � 9.0 pmol/l per 180 min; P � 0.003). CONCLUSIONS — Artificial sweeteners synergize with glucose to enhance GLP-1 release in humans. This increase in GLP-1 secretion may be mediated via stimulation of sweet-taste receptors on L-cells by artificial sweetener. Consumption of sodas containing artificial sweeteners is common practice in both children and adults. It is generally assumed that glucose metabolism is not altered because these sodas contain no or extremely few calories from carbohydrate. However, recent data obtained from animal studies demonstrate that artificial sweeteners play an active metabolic role within the gastrointestinal tract. Sweet-taste receptors, including the T1R family and �-gustducin, respond not only to caloric sugars such as sucrose but also to artificial sweeteners, including sucralose (Splenda) and acesulfame-K (1,2). In both humans and animals, these receptors have been shown to be present in glucagon-like peptide (GLP)-1–secreting L-cells of the gut mucosa as well as in lingual taste buds (3–5) and serve as critical mediators of GLP-1 secretion (5). In Diabetes Care 32:2184–2186, 2009 this study, we examined the effect of artificial sweeteners in a commercially available soft drink on glucose, insulin, and GLP-1 in humans

    Ellipsoidal shapes in general relativity: general definitions and an application

    Get PDF
    A generalization of the notion of ellipsoids to curved Riemannian spaces is given and the possibility to use it in describing the shapes of rotating bodies in general relativity is examined. As an illustrative example, stationary, axisymmetric perfect-fluid spacetimes with a so-called confocal inside ellipsoidal symmetry are investigated in detail under the assumption that the 4-velocity of the fluid is parallel to a time-like Killing vector field. A class of perfect-fluid metrics representing interior NUT-spacetimes is obtained along with a vacuum solution with a non-zero cosmological constant.Comment: Latex, 22 pages, Revised version accepted in Class. Quantum. Grav., references adde

    Sparsity of integer solutions in the average case

    Get PDF
    We examine how sparse feasible solutions of integer programs are, on average. Average case here means that we fix the constraint matrix and vary the right-hand side vectors. For a problem in standard form with m equations, there exist LP feasible solutions with at most m many nonzero entries. We show that under relatively mild assumptions, integer programs in standard form have feasible solutions with O(m) many nonzero entries, on average. Our proof uses ideas from the theory of groups, lattices, and Ehrhart polynomials. From our main theorem we obtain the best known upper bounds on the integer Carathéodory number provided that the determinants in the data are small
    corecore